Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Traumatology ; (6): 1-7, 2014.
Article in English | WPRIM | ID: wpr-358908

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the neuroprotective effects of glycyrrhizin (Gly) as well as its effect on expression of high-mobility group box 1 (HMGB1) in rats after traumatic brain injury (TBI).</p><p><b>METHODS</b>Male Sprague-Dawley rats were randomly divided into three groups: sham group, TBI group, and TBI+Gly group (n=36 per group). Rat TBI model was made by using the modified Feeney's method. In TBI+Gly group, Gly was administered intravenously at a dosage of 10 mg/kg 30 min after TBI. At 24 h after TBI, motor function and brain water content were evaluated. Meanwhile, HMGB1/HMGB1 receptors including toll-like receptor 4 (TLR4) and receptor for advanced glycation end products (RAGE)/nuclear factor-κB(NF-κB) signaling pathway and inflammatory cytokines in the injured brain tissues were detected using quantitative real-time polymerase chain reaction, western blot, electrophoretic mobility shift assay and enzyme-linked immunosorbent assay. Furthermore, HMGB1, RAGE and TLR4 immunohistochemistry and apoptosis were analyzed.</p><p><b>RESULTS</b>Beam walking performance impairment and brain edema were significantly reduced in TBI+Gly group compared with TBI group; meanwhile, the over-expressions of HMGB1/HMGB1 receptors (TLR4 and RAGE)/NF-κB DNA-binding activity and inflammatory cytokines were inhibited. The percentages of HMGB1, RAGE and TLR4-positive cells and apoptotic cells were respectively 58.37% ± 5.06%, 54.15% ± 4.65%, 65.50% ± 4.83%, 52.02% ± 4.63% in TBI group and 39.99% ± 4.99%, 34.87% ± 5.02%, 43.33% ± 4.54%, 37.84% ± 5.16% in TBI+Gly group (all P<0.01 compared with TBI group).</p><p><b>CONCLUSION</b>Gly can reduce secondary brain injury and improve outcomes in rat following TBI by down-regulation of HMGB1/HMGB1 receptors (TLR4 and RAGE)/NF-κB-mediated inflammatory responses in the injured rat brain.</p>


Subject(s)
Animals , Male , Rats , Brain Injuries , Drug Therapy , Glycyrrhizic Acid , Pharmacology , Therapeutic Uses , HMGB1 Protein , Metabolism , Neuroprotective Agents , Therapeutic Uses , Rats, Sprague-Dawley
2.
Chinese Medical Journal ; (24): 1267-1272, 2009.
Article in English | WPRIM | ID: wpr-292727

ABSTRACT

<p><b>BACKGROUND</b>Cytosine deaminase (CD) converts 5-fluorocytosine (5-FC) to 5-fluorouracil (5-FU) in CD/5-FC gene therapy, 5-FU will be mostly converted into nontoxic beta-alanine without uracil phosphoribosyltransferase (UPRT). UPRT catalyzes the conversion of 5-FU to 5-fluorouridine monophosphate, which directly kills CD::UPRT-expressing cells and surrounding cells via the bystander effect. But the pharmacokinetics and the bystander effect of CD::UPRT/5-FC has not been verified in vivo and in vitro. Before the CD::UPRT/5-FC bi-gene therapy system is used in clinical trial, it is essential to monitor the transgene expression and function in vivo. Thus, we developed a preclinical tumor model to investigate the feasibility of using (19)F-magnetic resonance spectroscopy ((19)F-MRS) and optical imaging to measure non-invasive CD and UPRT expression and its bystander effect.</p><p><b>METHODS</b>C6 and C6-CD::UPRT cells were cultured with 5-FC. The medium, cells and their mixture were analyzed by (19)F-MRS. Rats with intracranial xenografted encephalic C6-CD::UPRT glioma were injected intraperitoneally with 5-FC and their (19)F-MRS spectra recorded. Then the pharmacokinetics of 5-FC was proved. Mixtures of C6 and C6-CD::UPRT cells at different ratios were cultured with 5-FC and the cytotoxic efficacy and survival rate of cells recorded. To determine the mechanism of the bystander effect, the culture media from cell comprising 25% and 75% C6-CD::UPRT cells were examined by (19)F-MRS. A comparative study of mean was performed using analysis of variance (ANOVA).</p><p><b>RESULTS</b>(19)F-MRS on samples from C6-CD::UPRT cells cultured with 5-FC showed three broad resonance signals corresponding to 5-FC, 5-FU and fluorinated nucleotides (F-Nuctd). For the C6 mixture, only the 5-FC peak was detected. In vivo serial (19)F-MRS spectra showed a strong 5-FC peak and a weak 5-FU peak at 20 minutes after 5-FC injection. The 5-FU concentration reached a maximum at about 50 minutes. The F-Nuctd signal appeared after about 1 hour, reached a maximum at around 160 minutes, and was detectable for several hours. At a 10% ratio of C6-CD::UPRT cells, the survival rate was (79.55 +/- 0.88)% (P < 0.01). As the C6-CD::UPRT ratio increased, the survival rate of the cells decreased. (19)F-MRS showed that the signals for 5-FU and F-Nuctd in the culture medium increased as the ratio of C6-CD::UPRT in the mixture increased.</p><p><b>CONCLUSIONS</b>(19)F-MRS studies indicated that C6-CD::UPRT cells could effectively express CD and UPRT enzymes. The CD::UPRT/5-FC system showed an obvious bystander effect. This study demonstrated that CD::UPRT/5-FC gene therapy is suitable for 5-FC to F-Nuctd metabolism; and (19)F-MRS can monitor transferred CD::UPRT gene expression and catalysis of substrates noninvasively, dynamically and quantitatively.</p>


Subject(s)
Animals , Humans , Male , Rats , Antimetabolites , Pharmacokinetics , Therapeutic Uses , Cell Line , Cytosine Deaminase , Genetics , Physiology , Flucytosine , Pharmacokinetics , Therapeutic Uses , Genetic Therapy , Methods , Glioma , Drug Therapy , Therapeutics , Magnetic Resonance Imaging , Pentosyltransferases , Genetics , Physiology , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL